Title: | Using 'KEEL' in R Code |
---|---|
Description: | 'KEEL' is a popular 'Java' software for a large number of different knowledge data discovery tasks. This package takes the advantages of 'KEEL' and R, allowing to use 'KEEL' algorithms in simple R code. The implemented R code layer between R and 'KEEL' makes easy both using 'KEEL' algorithms in R as implementing new algorithms for 'RKEEL' in a very simple way. It includes more than 100 algorithms for classification, regression, preprocess, association rules and imbalance learning, which allows a more complete experimentation process. For more information about 'KEEL', see <http://www.keel.es/>. |
Authors: | Jose M. Moyano [aut, cre], Luciano Sanchez [aut], Oliver Sanchez [ctb], Jesus Alcala-Fernandez [ctb] |
Maintainer: | Jose M. Moyano <[email protected]> |
License: | GPL |
Version: | 1.3.4 |
Built: | 2024-11-11 04:29:43 UTC |
Source: | https://github.com/cran/RKEEL |
ABB_IEP_FS Preprocess Algorithm from KEEL.
ABB_IEP_FS(train, test, seed)
ABB_IEP_FS(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ABB_IEP_FS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ABB_IEP_FS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
AdaBoost_I Imbalanced Classification Algorithm from KEEL.
AdaBoost_I(train, test, pruned, confidence, instancesPerLeaf, numClassifiers, algorithm, trainMethod, seed)
AdaBoost_I(train, test, pruned, confidence, instancesPerLeaf, numClassifiers, algorithm, trainMethod, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
numClassifiers |
numClassifiers. Default value = 10 |
algorithm |
algorithm. Default value = "ADABOOST" |
trainMethod |
trainMethod. Default value = "NORESAMPLING" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::AdaBoost_I(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::AdaBoost_I(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
AdaBoostNC_C Classification Algorithm from KEEL.
AdaBoostNC_C(train, test, pruned, confidence, instancesPerLeaf, numClassifiers, algorithm, trainMethod, lambda, seed)
AdaBoostNC_C(train, test, pruned, confidence, instancesPerLeaf, numClassifiers, algorithm, trainMethod, lambda, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
numClassifiers |
numClassifiers. Default value = 10 |
algorithm |
algorithm. Default value = "ADABOOST.NC" |
trainMethod |
trainMethod. Default value = "NORESAMPLING" |
lambda |
lambda. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::AdaBoostNC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::AdaBoostNC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Alatasetal_A Association Rules Algorithm from KEEL.
Alatasetal_A(dat, seed, NumberofEvaluations, InitialRandomChromosomes, rDividingPoints, TournamentSize, ProbabilityofCrossover, MinimumProbabilityofMutation, MaximumProbabilityofMutation, ImportanceofRulesSupport, ImportanceofRulesConfidence, ImportanceofNumberofInvolvedAttributes, ImportanceofIntervalsAmplitude, ImportanceofNumberofRecordsAlreadyCovered, AmplitudeFactor)
Alatasetal_A(dat, seed, NumberofEvaluations, InitialRandomChromosomes, rDividingPoints, TournamentSize, ProbabilityofCrossover, MinimumProbabilityofMutation, MaximumProbabilityofMutation, ImportanceofRulesSupport, ImportanceofRulesConfidence, ImportanceofNumberofInvolvedAttributes, ImportanceofIntervalsAmplitude, ImportanceofNumberofRecordsAlreadyCovered, AmplitudeFactor)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
NumberofEvaluations. Default value = 50000 |
InitialRandomChromosomes |
Initial Random Chromosomes. Default value = 12 |
rDividingPoints |
r-Dividing Points. Default value = 3 |
TournamentSize |
TournamentSize. Default value = 10 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.7 |
MinimumProbabilityofMutation |
Minimum Probability of Mutation. Default value = 0.05 |
MaximumProbabilityofMutation |
Maximum Probability of Mutation. Default value = 0.9 |
ImportanceofRulesSupport |
Importance of Rules Support. Default value = 5 |
ImportanceofRulesConfidence |
Importance of Rules Confidence. Default value = 20 |
ImportanceofNumberofInvolvedAttributes |
Importance of Number of Involved Attributes. Default value = 0.05 |
ImportanceofIntervalsAmplitude |
Importance of Intervals Amplitude. Default value = 0.02 |
ImportanceofNumberofRecordsAlreadyCovered |
Importance of Number of Records Already Covered. Default value = 0.01 |
AmplitudeFactor |
Amplitude Factor. Default value = 2.0 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Alatasetal_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Alatasetal_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
Alcalaetal_A Association Rules Algorithm from KEEL.
Alcalaetal_A(dat, seed, NumberofEvaluations, PopulationSize, NumberofBitsperGene, DecreasingFactorofLthresholdNOTUSED, FactorforParentCentricBLXCrossover, NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
Alcalaetal_A(dat, seed, NumberofEvaluations, PopulationSize, NumberofBitsperGene, DecreasingFactorofLthresholdNOTUSED, FactorforParentCentricBLXCrossover, NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 10000 |
PopulationSize |
Population Size. Default value = 50 |
NumberofBitsperGene |
Number of Bits per Gene. Default value = 30 |
DecreasingFactorofLthresholdNOTUSED |
Decreasing Factor of Lthreshold NOT USED. Default value = 0.1 |
FactorforParentCentricBLXCrossover |
Factor for Parent Centric BLXCrossover. Default value = 1.0 |
NumberofFuzzyRegionsforNumericAttributes |
Number of Fuzzy Regions for Numeric Attributes. Default value = 3 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Alcalaetal_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Alcalaetal_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
AllKNN_TSS Preprocess Algorithm from KEEL.
AllKNN_TSS(train, test, k, distance)
AllKNN_TSS(train, test, k, distance)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
distance |
distance. Default value = "Euclidean" |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::AllKNN_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::AllKNN_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
AllPosible_MV Preprocess Algorithm from KEEL.
AllPosible_MV(train, test)
AllPosible_MV(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::AllPosible_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::AllPosible_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
ANR_F Preprocess Algorithm from KEEL.
ANR_F(train, test, seed)
ANR_F(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("zoo") data_test <- RKEEL::loadKeelDataset("zoo") #Create algorithm algorithm <- RKEEL::ANR_F(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("zoo") data_test <- RKEEL::loadKeelDataset("zoo") #Create algorithm algorithm <- RKEEL::ANR_F(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
Apriori_A Association Rules Algorithm from KEEL.
Apriori_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, MinimumConfidence)
Apriori_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Apriori_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Apriori_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
ART_C Classification Algorithm from KEEL.
ART_C(train, test)
ART_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ART_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ART_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Class inheriting of KeelAlgorithm, to common methods for all KEEL Association Rules Algorithms. The specific association rules algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Class inheriting of ClassificationAlgorithm, to common methods for Associative Classification Algorithms.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Bayesian_D Preprocess Algorithm from KEEL.
Bayesian_D(train, test)
Bayesian_D(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Bayesian_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Bayesian_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
BNGE_C Classification Algorithm from KEEL.
BNGE_C(train, test, seed)
BNGE_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::BNGE_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::BNGE_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Bojarczuk_GP_C Classification Algorithm from KEEL.
Bojarczuk_GP_C(train, test, population_size, max_generations, max_deriv_size, rec_prob, copy_prob, seed)
Bojarczuk_GP_C(train, test, population_size, max_generations, max_deriv_size, rec_prob, copy_prob, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 200 |
max_generations |
max_generations. Default value = 200 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
copy_prob |
copy_prob. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test) algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test, population_size=5, max_generations=10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test) algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test, population_size=5, max_generations=10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
BSE_C Classification Algorithm from KEEL.
BSE_C(train, test, k, distance)
BSE_C(train, test, k, distance)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::BSE_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::BSE_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
C_SVM_C Classification Algorithm from KEEL.
C_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
C_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = "RBF" |
C |
C. Default value = 100.0 |
eps |
eps. Default value = 0.001 |
degree |
degree. Default value = 1 |
gamma |
gamma. Default value = 0.01 |
coef0 |
coef0. Default value = 0.0 |
nu |
nu. Default value = 0.1 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C_SVM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C_SVM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
C45_C Classification Algorithm from KEEL.
C45_C(train, test, pruned, confidence, instancesPerLeaf)
C45_C(train, test, pruned, confidence, instancesPerLeaf)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C45_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C45_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
C45Binarization_C Classification Algorithm from KEEL.
C45Binarization_C(train, test, pruned, confidence, instancesPerLeaf, binarization, scoreFunction, bts)
C45Binarization_C(train, test, pruned, confidence, instancesPerLeaf, binarization, scoreFunction, bts)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
binarization |
binarization. Default value = "OVO" |
scoreFunction |
scoreFunction. Default value = "WEIGHTED" |
bts |
bts. Default value = 0.05 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C45Binarization_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C45Binarization_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
C45Rules_C Classification Algorithm from KEEL.
C45Rules_C(train, test, confidence, itemsetsPerLeaf, threshold, seed)
C45Rules_C(train, test, confidence, itemsetsPerLeaf, threshold, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
threshold |
threshold. Default value = 10 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C45Rules_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::C45Rules_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CamNN_C Classification Algorithm from KEEL.
CamNN_C(train, test, k)
CamNN_C(train, test, k)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CamNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CamNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CART_C Classification Algorithm from KEEL.
CART_C(train, test, maxDepth)
CART_C(train, test, maxDepth)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
maxDepth |
k. Default value = 90 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CART_C(data_train, data_test, maxDepth=3) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CART_C(data_train, data_test, maxDepth=3) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CART_R Regression Algorithm from KEEL.
CART_R(train, test, maxDepth)
CART_R(train, test, maxDepth)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
maxDepth |
maxDepth. Default value = 90 |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::CART_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::CART_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CBA_C Associative Classification Algorithm from KEEL.
CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)
CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_support |
min_support. Default value = 0.01 |
min_confidence |
min_confidence. Default value = 0.5 |
pruning |
indicates wether pruning or not. Default value = TRUE |
maxCandidates |
maxCandidates; if 0, no limit. Default value = 80000 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data <- loadKeelDataset("breast") #Create algorithm algorithm <- RKEEL::CBA_C(data, data) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data <- loadKeelDataset("breast") #Create algorithm algorithm <- RKEEL::CBA_C(data, data) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CenterNN_C Classification Algorithm from KEEL.
CenterNN_C(train, test)
CenterNN_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CenterNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CenterNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CFAR_C Classification Algorithm from KEEL.
CFAR_C(train, test, min_support, min_confidence, threshold, num_labels, seed)
CFAR_C(train, test, min_support, min_confidence, threshold, num_labels, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_support |
min_support. Default value = 0.1 |
min_confidence |
min_confidence. Default value = 0.85 |
threshold |
threshold. Default value = 0.15 |
num_labels |
num_labels. Default value = 5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CFAR_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CFAR_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CFKNN_C Classification Algorithm from KEEL.
CFKNN_C(train, test, k, alpha, seed)
CFKNN_C(train, test, k, alpha, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
alpha |
alpha. Default value = 0.6 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CFKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CFKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CHC_C Classification Algorithm from KEEL.
CHC_C(train, test, pop_size, evaluations, alfa, restart_change, prob_restart, prob_diverge, k, distance, seed)
CHC_C(train, test, pop_size, evaluations, alfa, restart_change, prob_restart, prob_diverge, k, distance, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pop_size |
pop_size. Default value = 50 |
evaluations |
evaluations. Default value = 10000 |
alfa |
alfa. Default value = 0.5 |
restart_change |
restart_change. Default value = 0.35 |
prob_restart |
prob_restart. Default value = 0.25 |
prob_diverge |
prob_diverge. Default value = 0.05 |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CHC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CHC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Class inheriting of KeelAlgorithm, to common methods for all KEEL Classification Algorithms. The specific classification algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Class to calculate and store some results for a ClassificationAlgorithm. It receives as parameter the prediction of a classification algorithm as a data.frame object.
CleanAttributes_TR Preprocess Algorithm from KEEL.
CleanAttributes_TR(train, test)
CleanAttributes_TR(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::CleanAttributes_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::CleanAttributes_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
ClusterAnalysis_D Preprocess Algorithm from KEEL.
ClusterAnalysis_D(train, test)
ClusterAnalysis_D(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ClusterAnalysis_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ClusterAnalysis_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
CMAR_C Associative Classification Algorithm from KEEL.
CMAR_C(train, test, min_confidence, min_support, databaseCoverage)
CMAR_C(train, test, min_confidence, min_support, databaseCoverage)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_confidence |
min_confidence. Default value = 0.5 |
min_support |
min_support. Default value = 0.01 |
databaseCoverage |
databaseCoverage. Default value = 4 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data <- loadKeelDataset("breast") #Create algorithm algorithm <- RKEEL::CMAR_C(data, data) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data <- loadKeelDataset("breast") #Create algorithm algorithm <- RKEEL::CMAR_C(data, data) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CNN_C Classification Algorithm from KEEL.
CNN_C(train, test, k, distance, seed)
CNN_C(train, test, k, distance, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CPAR_C Associative Classification Algorithm from KEEL.
CPAR_C(train, test, delta, min_gain, alpha, rules_prediction)
CPAR_C(train, test, delta, min_gain, alpha, rules_prediction)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
delta |
delta. Default value = 0.05 |
min_gain |
min_gain. Default value = 0.7 |
alpha |
alpha. Default value = 0.66 |
rules_prediction |
rules_prediction. Default value = 5 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data <- loadKeelDataset("breast") #Create algorithm algorithm <- RKEEL::CPAR_C(data, data) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data <- loadKeelDataset("breast") #Create algorithm algorithm <- RKEEL::CPAR_C(data, data) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CPW_C Classification Algorithm from KEEL.
CPW_C(train, test, beta, mu, ro, epsilon)
CPW_C(train, test, beta, mu, ro, epsilon)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 8.0 |
mu |
mu. Default value = 0.001 |
ro |
ro. Default value = 0.001 |
epsilon |
epsilon. Default value = 0.001 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CPW_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CPW_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
CW_C Classification Algorithm from KEEL.
CW_C(train, test, beta, mu, epsilon)
CW_C(train, test, beta, mu, epsilon)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 8.0 |
mu |
mu. Default value = 0.001 |
epsilon |
epsilon. Default value = 0.001 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CW_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::CW_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
DecimalScaling_TR Preprocess Algorithm from KEEL.
DecimalScaling_TR(train, test)
DecimalScaling_TR(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::DecimalScaling_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::DecimalScaling_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
DecrRBFN_C Classification Algorithm from KEEL.
DecrRBFN_C(train, test, percent, num_neurons_ini, alfa, seed)
DecrRBFN_C(train, test, percent, num_neurons_ini, alfa, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
percent |
percent. Default value = 0.1 |
num_neurons_ini |
num_neurons_ini. Default value = 20 |
alfa |
alfa. Default value = 0.3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::DecrRBFN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::DecrRBFN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Deeps_C Classification Algorithm from KEEL.
Deeps_C(train, test, beta)
Deeps_C(train, test, beta)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 0.12 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Deeps_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Deeps_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Downloads a file from a given mirror and checks its md5 sum. The file is stored in a given path
downloadFromMirror(mirror, file_path, md5_sum)
downloadFromMirror(mirror, file_path, md5_sum)
mirror |
URL from which to download the file. |
file_path |
Path or folder where the downloaded file will be stored. |
md5_sum |
md5 checksum string corresponding to the file to download. The method will check that the downloaded file checksum and the md5_sum parameter match. |
Returns 1 if the download was successful and -1 otherwise.
# Download RKEELjars file dCode = RKEEL::downloadFromMirror("https://personal.us.es/jmoyano1/RKEELjars_1.1.zip", downloadedJarFile, md5_sum) # Check if the download was successful if(dCode<0){ print('There was an error during the download.') }
# Download RKEELjars file dCode = RKEEL::downloadFromMirror("https://personal.us.es/jmoyano1/RKEELjars_1.1.zip", downloadedJarFile, md5_sum) # Check if the download was successful if(dCode<0){ print('There was an error during the download.') }
DSM_C Classification Algorithm from KEEL.
DSM_C(train, test, iterations, percentage, alpha_0, seed)
DSM_C(train, test, iterations, percentage, alpha_0, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
iterations |
iterations. Default value = 100 |
percentage |
percentage. Default value = 10 |
alpha_0 |
alpha_0. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::DSM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::DSM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
DT_GA_C Classification Algorithm from KEEL.
DT_GA_C(train, test, confidence, instancesPerLeaf, geneticAlgorithmApproach, threshold, numGenerations, popSize, crossoverProb, mutProb, seed)
DT_GA_C(train, test, confidence, instancesPerLeaf, geneticAlgorithmApproach, threshold, numGenerations, popSize, crossoverProb, mutProb, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
geneticAlgorithmApproach |
geneticAlgorithmApproach. Default value = "GA-LARGE-SN" |
threshold |
threshold. Default value = 10 |
numGenerations |
numGenerations. Default value = 50 |
popSize |
popSize. Default value = 200 |
crossoverProb |
crossoverProb. Default value = 0.8 |
mutProb |
mutProb. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::DT_GA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::DT_GA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
EARMGA_A Association Rules Algorithm from KEEL.
EARMGA_A(dat, seed, FixedLengthofAssociationRules, PopulationSize, TotalNumberofEvaluations, DifferenceBoundaryNOTUSED, ProbabilityofSelection, ProbabilityofCrossover, ProbabilityofMutation, NumberofPartitionsforNumericAttributes)
EARMGA_A(dat, seed, FixedLengthofAssociationRules, PopulationSize, TotalNumberofEvaluations, DifferenceBoundaryNOTUSED, ProbabilityofSelection, ProbabilityofCrossover, ProbabilityofMutation, NumberofPartitionsforNumericAttributes)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
FixedLengthofAssociationRules |
Fixed Length of Association Rules. Default value = 2 |
PopulationSize |
PopulationSize. Default value = 100 |
TotalNumberofEvaluations |
Total Number of Evaluations. Default value = 50000 |
DifferenceBoundaryNOTUSED |
Difference Boundary NOT USED. Default value = 0.01 |
ProbabilityofSelection |
Probability of Selection. Default value = 0.75 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.7 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::EARMGA_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::EARMGA_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
Eclat_A Association Rules Algorithm from KEEL.
Eclat_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, MinimumConfidence)
Eclat_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Eclat_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::Eclat_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
EPSILON_SVR_R Regression Algorithm from KEEL.
EPSILON_SVR_R(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
EPSILON_SVR_R(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = "RBF" |
C |
C. Default value = 100.0 |
eps |
eps. Default value = 0.001 |
degree |
degree. Default value = 3 |
gamma |
gamma. Default value = 0.01 |
coef0 |
coef0. Default value = 0.0 |
nu |
nu. Default value = 0.5 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 0 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::EPSILON_SVR_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::EPSILON_SVR_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Falco_GP_C Classification Algorithm from KEEL.
Falco_GP_C(train, test, population_size, max_generations, max_deriv_size, rec_prob, mut_prob, copy_prob, alpha, seed)
Falco_GP_C(train, test, population_size, max_generations, max_deriv_size, rec_prob, mut_prob, copy_prob, alpha, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 200 |
max_generations |
max_generations. Default value = 200 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
mut_prob |
mut_prob. Default value = 0.1 |
copy_prob |
copy_prob. Default value = 0.01 |
alpha |
alpha. Default value = 0.9 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Falco_GP_C(data_train, data_test) algorithm <- RKEEL::Falco_GP_C(data_train, data_test, population_size = 5, max_generations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Falco_GP_C(data_train, data_test) algorithm <- RKEEL::Falco_GP_C(data_train, data_test, population_size = 5, max_generations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FCRA_C Classification Algorithm from KEEL.
FCRA_C(train, test, generations, pop_size, length_S_C, WCAR, WV, crossover_prob, mut_prob, n1, n2, max_iter, linguistic_values, seed)
FCRA_C(train, test, generations, pop_size, length_S_C, WCAR, WV, crossover_prob, mut_prob, n1, n2, max_iter, linguistic_values, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
generations |
generations. Default value = 50 |
pop_size |
pop_size. Default value = 30 |
length_S_C |
length_S_C. Default value = 10 |
WCAR |
WCAR. Default value = 10.0 |
WV |
WV. Default value = 1.0 |
crossover_prob |
crossover_prob. Default value = 1.0 |
mut_prob |
mut_prob. Default value = 0.01 |
n1 |
n1. Default value = 0.001 |
n2 |
n2. Default value = 0.1 |
max_iter |
max_iter. Default value = 100 |
linguistic_values |
linguistic_values. Default value = 5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FCRA_C(data_train, data_test, generations=10, pop_size=10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FCRA_C(data_train, data_test, generations=10, pop_size=10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FPgrowth_A Association Rules Algorithm from KEEL.
FPgrowth_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, MinimumConfidence)
FPgrowth_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
MinimumConfidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::FPgrowth_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::FPgrowth_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
FRNN_C Classification Algorithm from KEEL.
FRNN_C(train, test)
FRNN_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FRNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FRNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FRSBM_R Regression Algorithm from KEEL.
FRSBM_R(train, test, numrules, sigma, seed)
FRSBM_R(train, test, numrules, sigma, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numrules |
numrules. Default value = 1 |
sigma |
sigma. Default value = 0.0001 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::FRSBM_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::FRSBM_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FURIA_C Classification Algorithm from KEEL.
FURIA_C(train, test, optimizations, folds, seed)
FURIA_C(train, test, optimizations, folds, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
optimizations |
optimizations. Default value = 2 |
folds |
folds. Default value = 3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FURIA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FURIA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FuzzyApriori_A Association Rules Algorithm from KEEL.
FuzzyApriori_A(dat, NumberofPartitionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
FuzzyApriori_A(dat, NumberofPartitionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::FuzzyApriori_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::FuzzyApriori_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
FuzzyFARCHD_C Classification Algorithm from KEEL.
FuzzyFARCHD_C(train, test, linguistic_values, min_support, max_confidence, depth_max, K, max_evaluations, pop_size, alpha, bits_per_gen, inference_type, seed)
FuzzyFARCHD_C(train, test, linguistic_values, min_support, max_confidence, depth_max, K, max_evaluations, pop_size, alpha, bits_per_gen, inference_type, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
linguistic_values |
linguistic_values. Default value = 5 |
min_support |
min_support. Default value = 0.05 |
max_confidence |
max_confidence. Default value = 0.8 |
depth_max |
depth_max. Default value = 3 |
K |
K. Default value = 2 |
max_evaluations |
max_evaluations. Default value = 15000 |
pop_size |
pop_size. Default value = 50 |
alpha |
alpha. Default value = 0.15 |
bits_per_gen |
bits_per_gen. Default value = 30 |
inference_type |
inference_type. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FuzzyFARCHD_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FuzzyFARCHD_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FuzzyKNN_C Classification Algorithm from KEEL.
FuzzyKNN_C(train, test, k, M, initialization, init_k)
FuzzyKNN_C(train, test, k, M, initialization, init_k)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
M |
M. Default value = 2.0 |
initialization |
initialization. Default value = "CRISP" |
init_k |
init_k. Default value = 3 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FuzzyKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FuzzyKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
FuzzyNPC_C Classification Algorithm from KEEL.
FuzzyNPC_C(train, test, M)
FuzzyNPC_C(train, test, M)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
M |
M. Default value = 2.0 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FuzzyNPC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::FuzzyNPC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
GANN_C Classification Algorithm from KEEL.
GANN_C(train, test, hidden_layers, hidden_nodes, transfer, eta, alpha, lambda, test_data, validation_data, cross_validation, BP_cycles, improve, tipify_inputs, save_all, elite, num_individuals, w_range, connectivity, P_bp, P_param, P_struct, max_generations, seed)
GANN_C(train, test, hidden_layers, hidden_nodes, transfer, eta, alpha, lambda, test_data, validation_data, cross_validation, BP_cycles, improve, tipify_inputs, save_all, elite, num_individuals, w_range, connectivity, P_bp, P_param, P_struct, max_generations, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 |
|
hidden_nodes. Default value = 15 |
|
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
BP_cycles |
BP_cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
elite |
elite. Default value = 0.1 |
num_individuals |
num_individuals. Default value = 100 |
w_range |
w_range. Default value = 5.0 |
connectivity |
connectivity. Default value = 0.5 |
P_bp |
P_bp. Default value = 0.25 |
P_param |
P_param. Default value = 0.1 |
P_struct |
P_struct. Default value = 0.1 |
max_generations |
max_generations. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::GANN_C(data_train, data_test, hidden_layers=1, hidden_nodes=5, max_generations=5) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::GANN_C(data_train, data_test, hidden_layers=1, hidden_nodes=5, max_generations=5) #Run algorithm algorithm$run() #See results algorithm$testPredictions
GAR_A Association Rules Algorithm from KEEL.
GAR_A(dat, seed, NumberofItemsets, TotalNumberofEvaluations, PopulationSize, ProbabilityofSelection, ProbabilityofCrossover, ProbabilityofMutation, ImportanceofNumberofRecordsAlreadyCovered, ImportanceofIntervalsAmplitude, ImportanceofNumberofInvolvedAttributes, AmplitudeFactor, MinimumSupport, MinimumConfidence)
GAR_A(dat, seed, NumberofItemsets, TotalNumberofEvaluations, PopulationSize, ProbabilityofSelection, ProbabilityofCrossover, ProbabilityofMutation, ImportanceofNumberofRecordsAlreadyCovered, ImportanceofIntervalsAmplitude, ImportanceofNumberofInvolvedAttributes, AmplitudeFactor, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofItemsets |
Number of Itemsets. Default value = 100 |
TotalNumberofEvaluations |
Total Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
ProbabilityofSelection |
Probability of Selection. Default value = 0.25 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.7 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
ImportanceofNumberofRecordsAlreadyCovered |
Importance of Number of Records Already Covered. Default value = 0.4 |
ImportanceofIntervalsAmplitude |
Importance of Intervals Amplitude. Default value = 0.7 |
ImportanceofNumberofInvolvedAttributes |
Importance of Number of Involved Attributes. Default value = 0.5 |
AmplitudeFactor |
Amplitude Factor. Default value = 2.0 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("glass") #Create algorithm algorithm <- RKEEL::GAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("glass") #Create algorithm algorithm <- RKEEL::GAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
GENAR_A Association Rules Algorithm from KEEL.
GENAR_A(dat, seed, NumberofAssociationRules, TotalNumberofEvaluations, PopulationSize, ProbabilityofSelection, ProbabilityofMutation, PenalizationFactor, AmplitudeFactor)
GENAR_A(dat, seed, NumberofAssociationRules, TotalNumberofEvaluations, PopulationSize, ProbabilityofSelection, ProbabilityofMutation, PenalizationFactor, AmplitudeFactor)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofAssociationRules |
Number of Association Rules. Default value = 30 |
TotalNumberofEvaluations |
Total Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
ProbabilityofSelection |
Probability of Selection. Default value = 0.25 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
PenalizationFactor |
Penalization Factor. Default value = 0.7 |
AmplitudeFactor |
Amplitude Factor. Default value = 2.0 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("glass") #Create algorithm algorithm <- RKEEL::GENAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("glass") #Create algorithm algorithm <- RKEEL::GENAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
GeneticFuzzyApriori_A Association Rules Algorithm from KEEL.
GeneticFuzzyApriori_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover, NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
GeneticFuzzyApriori_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover, NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 10000 |
PopulationSize |
Population Size. Default value = 50 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.01 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.8 |
ParameterdforMMACrossover |
Parameterd for MMA Crossover. Default value = 0.35 |
NumberofFuzzyRegionsforNumericAttributes |
Number of Fuzzy Regions for Numeric Attributes. Default value = 3 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::GeneticFuzzyApriori_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::GeneticFuzzyApriori_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
GeneticFuzzyAprioriDC_A Association Rules Algorithm from KEEL.
GeneticFuzzyAprioriDC_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover, NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
GeneticFuzzyAprioriDC_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover, NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 10000 |
PopulationSize |
Population Size. Default value = 50 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.01 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.8 |
ParameterdforMMACrossover |
Parameterd for MMA Crossover. Default value = 0.35 |
NumberofFuzzyRegionsforNumericAttributes |
Number of Fuzzy Regions for Numeric Attributes. Default value = 3 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::GeneticFuzzyAprioriDC_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::GeneticFuzzyAprioriDC_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
Method for getting the attribute lines from data.frame objects
getAttributeLinesFromDataframes(trainData, testData)
getAttributeLinesFromDataframes(trainData, testData)
trainData |
Train dataset as data.frame |
testData |
Test dataset as data.frame |
Returns a list with the attribute names and types
iris_train <- RKEEL::loadKeelDataset("iris_train") iris_test <- RKEEL::loadKeelDataset("iris_test") attributeLines <- getAttributeLinesFromDataframes(iris_train, iris_test)
iris_train <- RKEEL::loadKeelDataset("iris_train") iris_test <- RKEEL::loadKeelDataset("iris_test") attributeLines <- getAttributeLinesFromDataframes(iris_train, iris_test)
Method for knowing the KEEL .jar files path.
getExePath()
getExePath()
Returns a string with the path of the KEEL .jar files.
getExePath()
getExePath()
Method that returns a list with the jar names from RKEEL
getJarList()
getJarList()
Returns a list with the jar names from RKEEL.
getJarList()
getJarList()
Method for knowing the RunKeel.jar path.
getJarPath()
getJarPath()
Returns a string with the RunKeel.jar path.
getJarPath()
getJarPath()
GFS_AdaBoost_C Classification Algorithm from KEEL.
GFS_AdaBoost_C(train, test, numLabels, numRules, seed)
GFS_AdaBoost_C(train, test, numLabels, numRules, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::GFS_AdaBoost_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::GFS_AdaBoost_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
GFS_GP_R Regression Algorithm from KEEL.
GFS_GP_R(train, test, numLabels, numRules, popSize, numisland, steady, numIter, tourSize, mutProb, aplMut, probMigra, probOptimLocal, numOptimLocal, idOptimLocal, nichinggap, maxindniche, probintraniche, probcrossga, probmutaga, lenchaingap, maxtreeheight, seed)
GFS_GP_R(train, test, numLabels, numRules, popSize, numisland, steady, numIter, tourSize, mutProb, aplMut, probMigra, probOptimLocal, numOptimLocal, idOptimLocal, nichinggap, maxindniche, probintraniche, probcrossga, probmutaga, lenchaingap, maxtreeheight, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
popSize |
popSize. Default value = 30 |
numisland |
numisland. Default value = 2 |
steady |
steady. Default value = 1 |
numIter |
numIter. Default value = 100 |
tourSize |
tourSize. Default value = 4 |
mutProb |
mutProb. Default value = 0.01 |
aplMut |
aplMut. Default value = 0.1 |
probMigra |
probMigra. Default value = 0.001 |
probOptimLocal |
probOptimLocal. Default value = 0.00 |
numOptimLocal |
numOptimLocal. Default value = 0 |
idOptimLocal |
idOptimLocal. Default value = 0 |
nichinggap |
nichinggap. Default value = 0 |
maxindniche |
maxindniche. Default value = 8 |
probintraniche |
probintraniche. Default value = 0.75 |
probcrossga |
probcrossga. Default value = 0.5 |
probmutaga |
probmutaga. Default value = 0.5 |
lenchaingap |
lenchaingap. Default value = 10 |
maxtreeheight |
maxtreeheight. Default value = 8 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::GFS_GP_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::GFS_GP_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
GFS_GSP_R Regression Algorithm from KEEL.
GFS_GSP_R(train, test, numLabels, numRules, deltafitsap, p0sap, p1sap, amplMut, nsubsap, probOptimLocal, numOptimLocal, idOptimLocal, probcrossga, probmutaga, lenchaingap, maxtreeheight, numItera, seed)
GFS_GSP_R(train, test, numLabels, numRules, deltafitsap, p0sap, p1sap, amplMut, nsubsap, probOptimLocal, numOptimLocal, idOptimLocal, probcrossga, probmutaga, lenchaingap, maxtreeheight, numItera, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
deltafitsap |
deltafitsap. Default value = 0.5 |
p0sap |
p0sap. Default value = 0.5 |
p1sap |
p1sap. Default value = 0.5 |
amplMut |
amplMut. Default value = 0.1 |
nsubsap |
nsubsap. Default value = 10 |
probOptimLocal |
probOptimLocal. Default value = 0.00 |
numOptimLocal |
numOptimLocal. Default value = 0 |
idOptimLocal |
idOptimLocal. Default value = 0 |
probcrossga |
probcrossga. Default value = 0.5 |
probmutaga |
probmutaga. Default value = 0.5 |
lenchaingap |
lenchaingap. Default value = 10 |
maxtreeheight |
maxtreeheight. Default value = 8 |
numItera |
numItera. Default value = 10000 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::GFS_GSP_R(data_train, data_test) algorithm <- RKEEL::GFS_GSP_R(data_train, data_test, numRules=2, numItera=10, maxtreeheight=2) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::GFS_GSP_R(data_train, data_test) algorithm <- RKEEL::GFS_GSP_R(data_train, data_test, numRules=2, numItera=10, maxtreeheight=2) #Run algorithm algorithm$run() #See results algorithm$testPredictions
GFS_LogitBoost_C Classification Algorithm from KEEL.
GFS_LogitBoost_C(train, test, numLabels, numRules, seed)
GFS_LogitBoost_C(train, test, numLabels, numRules, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 25 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::GFS_LogitBoost_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::GFS_LogitBoost_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
GFS_RB_MF_R Regression Algorithm from KEEL.
GFS_RB_MF_R(train, test, numLabels, popSize, generations, crossProb, mutProb, seed)
GFS_RB_MF_R(train, test, numLabels, popSize, generations, crossProb, mutProb, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
popSize |
popSize. Default value = 50 |
generations |
generations. Default value = 100 |
crossProb |
crossProb. Default value = 0.9 |
mutProb |
mutProb. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test) algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test, popSize = 5, generations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test) algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test, popSize = 5, generations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Method for check if a dataset has continuous data
hasContinuousData(data)
hasContinuousData(data)
data |
Dataset as data.frame |
Returns TRUE if the dataset has continuous data and FALSE if it has not.
iris <- RKEEL::loadKeelDataset("iris") hasContinuousData(iris)
iris <- RKEEL::loadKeelDataset("iris") hasContinuousData(iris)
Method for check if a dataset has missing values
hasMissingValues(data)
hasMissingValues(data)
data |
Dataset as data.frame |
Returns TRUE if the dataset has missing values and FALSE if it has not.
iris <- RKEEL::loadKeelDataset("iris") hasMissingValues(iris)
iris <- RKEEL::loadKeelDataset("iris") hasMissingValues(iris)
ID3_C Classification Algorithm from KEEL.
ID3_C(train, test)
ID3_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ID3_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ID3_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
ID3_D Preprocess Algorithm from KEEL.
ID3_D(train, test)
ID3_D(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ID3_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ID3_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
IF_KNN_C Classification Algorithm from KEEL.
IF_KNN_C(train, test, K, mA, vA, mR, vR, k)
IF_KNN_C(train, test, K, mA, vA, mR, vR, k)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
K |
K. Default value = 3 |
mA |
mA. Default value = 0.6 |
vA |
vA. Default value = 0.4 |
mR |
mR. Default value = 0.3 |
vR |
vR. Default value = 0.7 |
k |
k. Default value = 5 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::IF_KNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::IF_KNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Ignore_MV Preprocess Algorithm from KEEL.
Ignore_MV(train, test)
Ignore_MV(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Ignore_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Ignore_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
Class inheriting of ClassificationAlgorithm, to common methods for all KEEL Imbalanced Classification Algorithms. The specific imbalanced-classification algorithms must inherit of this class.
IncrRBFN_C Classification Algorithm from KEEL.
IncrRBFN_C(train, test, epsilon, alfa, delta, seed)
IncrRBFN_C(train, test, epsilon, alfa, delta, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
epsilon |
epsilon. Default value = 0.1 |
alfa |
alfa. Default value = 0.3 |
delta |
delta. Default value = 0.5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::IncrRBFN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::IncrRBFN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Method for check if a dataset is multi-class
isMultiClass(data)
isMultiClass(data)
data |
Dataset as data.frame |
Returns TRUE if the dataset is multi-class and FALSE if it is not.
iris <- RKEEL::loadKeelDataset("iris") isMultiClass(iris)
iris <- RKEEL::loadKeelDataset("iris") isMultiClass(iris)
IterativePartitioningFilter_F Preprocess Algorithm from KEEL.
IterativePartitioningFilter_F(train, test, numPartitions, filterType, confidence, itemsetsPerLeaf, seed)
IterativePartitioningFilter_F(train, test, numPartitions, filterType, confidence, itemsetsPerLeaf, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numPartitions |
numPartitions. Default value = 5 |
filterType |
filterType. Default value = "consensus" |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::IterativePartitioningFilter_F(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::IterativePartitioningFilter_F(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
JFKNN_C Classification Algorithm from KEEL.
JFKNN_C(train, test)
JFKNN_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::JFKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::JFKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Principal class for implementing KEEL Algorithms. The distinct types of algorithms must inherit of this class.
Kernel_C Classification Algorithm from KEEL.
Kernel_C(train, test, sigma, seed)
Kernel_C(train, test, sigma, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
sigma |
sigma. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Kernel_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Kernel_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
KMeans_MV Preprocess Algorithm from KEEL.
KMeans_MV(train, test, k, error, iterations, seed)
KMeans_MV(train, test, k, error, iterations, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 10 |
error |
error. Default value = 100 |
iterations |
iterations. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::KMeans_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::KMeans_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
KNN-C Classification Algorithm from KEEL.
KNN_C(train, test, k, distance)
KNN_C(train, test, k, distance)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
Number of neighbors |
distance |
Distance function |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::KNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::KNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
KNN_MV Preprocess Algorithm from KEEL.
KNN_MV(train, test, k)
KNN_MV(train, test, k)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 10 |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::KNN_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::KNN_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
KSNN_C Classification Algorithm from KEEL.
KSNN_C(train, test, k)
KSNN_C(train, test, k)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::KSNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::KSNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
KStar_C Classification Algorithm from KEEL.
KStar_C(train, test, selection_method, blend, seed)
KStar_C(train, test, selection_method, blend, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
selection_method |
selection_method. Default value = "Fixed" |
blend |
blend. Default value = 0.2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::KStar_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::KStar_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
LDA_C Classification Algorithm from KEEL.
LDA_C(train, test, seed)
LDA_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::LDA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::LDA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
LinearLMS_C Classification Algorithm from KEEL.
LinearLMS_C(train, test, seed)
LinearLMS_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::LinearLMS_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::LinearLMS_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
LinearLMS_R Regression Algorithm from KEEL.
LinearLMS_R(train, test, seed)
LinearLMS_R(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::LinearLMS_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::LinearLMS_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Loads a dataset of the KEEL datasets repository.
The included datasets names are available at the getKeelDatasetList
method of RKEELdata.
loadKeelDataset(dataName)
loadKeelDataset(dataName)
dataName |
String with the correct data name of one of the KEEL datasets |
Returns a data.frame with the KEEL dataset.
RKEEL::loadKeelDataset("iris")
RKEEL::loadKeelDataset("iris")
Logistic_C Classification Algorithm from KEEL.
Logistic_C(train, test, ridge, maxIter)
Logistic_C(train, test, ridge, maxIter)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
ridge |
ridge. Default value = 1e-8 |
maxIter |
maxIter. Default value = -1 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Logistic_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Logistic_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
LVF_IEP_FS Preprocess Algorithm from KEEL.
LVF_IEP_FS(train, test, paramKNN, maxLoops, inconAllow, seed)
LVF_IEP_FS(train, test, paramKNN, maxLoops, inconAllow, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
paramKNN |
paramKNN. Default value = 1 |
maxLoops |
maxLoops. Default value = 770 |
inconAllow |
inconAllow. Default value = 0 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test) algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test, maxLoops = 30, inconAllow=2) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test) algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test, maxLoops = 30, inconAllow=2) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
M5_R Regression Algorithm from KEEL.
M5_R(train, test, type, pruningFactor, unsmoothed)
M5_R(train, test, type, pruningFactor, unsmoothed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
type |
type. Default value = "m" |
pruningFactor |
pruningFactor. Default value = 2 |
unsmoothed |
unsmoothed. Default value = TRUE |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::M5_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::M5_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
M5Rules_R Regression Algorithm from KEEL.
M5Rules_R(train, test, pruningFactor, heuristic)
M5Rules_R(train, test, pruningFactor, heuristic)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruningFactor |
pruningFactor. Default value = 2 |
heuristic |
heuristic. Default value = "Coverage" |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::M5Rules_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::M5Rules_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
MinMax_TR Preprocess Algorithm from KEEL.
MinMax_TR(train, test, newMin, newMax)
MinMax_TR(train, test, newMin, newMax)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
newMin |
newMin. Default value = 0.0 |
newMax |
newMax. Default value = 1.0 |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::MinMax_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::MinMax_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
MLP_BP_C Classification Algorithm from KEEL.
MLP_BP_C(train, test, hidden_layers, hidden_nodes, transfer, eta, alpha, lambda, test_data, validation_data, cross_validation, cycles, improve, tipify_inputs, save_all, seed)
MLP_BP_C(train, test, hidden_layers, hidden_nodes, transfer, eta, alpha, lambda, test_data, validation_data, cross_validation, cycles, improve, tipify_inputs, save_all, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 |
|
hidden_nodes. Default value = 15 |
|
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
cycles |
cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::MLP_BP_C(data_train, data_test, ) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::MLP_BP_C(data_train, data_test, ) #Run algorithm algorithm$run() #See results algorithm$testPredictions
MLP_BP_R Regression Algorithm from KEEL.
MLP_BP_R(train, test, hidden_layers, hidden_nodes, transfer, eta, alpha, lambda, test_data, validation_data, cross_validation, cycles, improve, tipify_inputs, save_all, seed)
MLP_BP_R(train, test, hidden_layers, hidden_nodes, transfer, eta, alpha, lambda, test_data, validation_data, cross_validation, cycles, improve, tipify_inputs, save_all, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 |
|
hidden_nodes. Default value = 15 |
|
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
cycles |
cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::MLP_BP_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::MLP_BP_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
ModelCS_TSS Preprocess Algorithm from KEEL.
ModelCS_TSS(train, test, k, distance)
ModelCS_TSS(train, test, k, distance)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
distance |
distance. Default value = "Euclidean" |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ModelCS_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ModelCS_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
MODENAR_A Association Rules Algorithm from KEEL.
MODENAR_A(dat, seed, PopulationSize, NumberofEvaluations, CrossoverrateCR, Thresholdforthenumberofnondominatedsolutions, Thefactorofamplitudeforeachattributeofthedataset, WeightforSupport, WeightforConfidence, WeightforComprehensibility, WeightforAmplitudeoftheIntervals)
MODENAR_A(dat, seed, PopulationSize, NumberofEvaluations, CrossoverrateCR, Thresholdforthenumberofnondominatedsolutions, Thefactorofamplitudeforeachattributeofthedataset, WeightforSupport, WeightforConfidence, WeightforComprehensibility, WeightforAmplitudeoftheIntervals)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
PopulationSize |
Population Size. Default value = 100 |
NumberofEvaluations |
Number of Evaluations. Default value = 50000 |
CrossoverrateCR |
Crossover rate CR. Default value = 0.3 |
Thresholdforthenumberofnondominatedsolutions |
Threshold for the number of non-dominated solutions. Default value = 60 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 2 |
WeightforSupport |
Weight for Support. Default value = 0.8 |
WeightforConfidence |
Weight for Confidence. Default value = 0.2 |
WeightforComprehensibility |
Weight for Comprehensibility. Default value = 0.1 |
WeightforAmplitudeoftheIntervals |
Weight for Amplitude of the Intervals. Default value = 0.4 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::MODENAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::MODENAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
MOEA_Ghosh_A Association Rules Algorithm from KEEL.
MOEA_Ghosh_A(dat, seed, NumberofObjetives, NumberofEvaluations, PopulationSize, PointCrossover, ProbabilityofCrossover, ProbabilityofMutation, Thefactorofamplitudeforeachattributeofthedataset)
MOEA_Ghosh_A(dat, seed, NumberofObjetives, NumberofEvaluations, PopulationSize, PointCrossover, ProbabilityofCrossover, ProbabilityofMutation, Thefactorofamplitudeforeachattributeofthedataset)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofObjetives |
Number of Objetives. Default value = 3 |
NumberofEvaluations |
Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
PointCrossover |
Point Crossover. Default value = 2 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.8 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.02 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 2.0 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::MOEA_Ghosh_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::MOEA_Ghosh_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
MOPNAR_A Association Rules Algorithm from KEEL.
MOPNAR_A(dat, seed, objetives, evaluations, parameter, weightNeighborhood, wrobabilitySolutionsNeighborhood, maxSolutions, probabilityMutation, amplitude, threshold)
MOPNAR_A(dat, seed, objetives, evaluations, parameter, weightNeighborhood, wrobabilitySolutionsNeighborhood, maxSolutions, probabilityMutation, amplitude, threshold)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
objetives |
objetives. Default value = 3 |
evaluations |
evaluations. Default value = 50000 |
parameter |
parameter. Default value = 13 |
weightNeighborhood |
weightNeighborhood. Default value = 10 |
wrobabilitySolutionsNeighborhood |
wrobabilitySolutionsNeighborhood. Default value = 0.9 |
maxSolutions |
maxSolutions. Default value = 2 |
probabilityMutation |
probabilityMutation. Default value = 0.1 |
amplitude |
amplitude. Default value = 2.0 |
threshold |
threshold. Default value = 5.0 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::MOPNAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::MOPNAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
MostCommon_MV Preprocess Algorithm from KEEL.
MostCommon_MV(train, test)
MostCommon_MV(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::MostCommon_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::MostCommon_MV(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
NB_C Classification Algorithm from KEEL.
NB_C(train, test)
NB_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::NB_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::NB_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
NICGAR_A Association Rules Algorithm from KEEL.
NICGAR_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, Thefactorofamplitudeforeachattributeofthedataset, NichingThreshold, QualityThreshold, PercentUpdate)
NICGAR_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation, Thefactorofamplitudeforeachattributeofthedataset, NichingThreshold, QualityThreshold, PercentUpdate)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 1286082570 |
PopulationSize |
Population Size. Default value = 1286082570 |
ProbabilityofMutation |
Probability of Mutation. Default value = 1286082570 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 1286082570 |
NichingThreshold |
Niching Threshold. Default value = 1286082570 |
QualityThreshold |
Quality Threshold. Default value = 1286082570 |
PercentUpdate |
Percent Update. Default value = 1286082570 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::NICGAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::NICGAR_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
NM_C Classification Algorithm from KEEL.
NM_C(train, test)
NM_C(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::NM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::NM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
NNEP_C Classification Algorithm from KEEL.
NNEP_C(train, test, hidden_nodes, transfer, generations, seed)
NNEP_C(train, test, hidden_nodes, transfer, generations, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_nodes. Default value = 4 |
|
transfer |
transfer. Default value = "Product_Unit" |
generations |
generations. Default value = 200 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::NNEP_C(data_train, data_test) algorithm <- RKEEL::NNEP_C(data_train, data_test, generations = 5) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::NNEP_C(data_train, data_test) algorithm <- RKEEL::NNEP_C(data_train, data_test, generations = 5) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Nominal2Binary_TR Preprocess Algorithm from KEEL.
Nominal2Binary_TR(train, test)
Nominal2Binary_TR(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Nominal2Binary_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Nominal2Binary_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
NU_SVM_C Classification Algorithm from KEEL.
NU_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
NU_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = 1 |
C |
C. Default value = "RBF" |
eps |
eps. Default value = 1000.0 |
degree |
degree. Default value = 0.001 |
gamma |
gamma. Default value = 10 |
coef0 |
coef0. Default value = 0.01 |
nu |
nu. Default value = 0.1 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::NU_SVM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::NU_SVM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
NU_SVR_R Regression Algorithm from KEEL.
NU_SVR_R(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
NU_SVR_R(train, test, KernelType, C, eps, degree, gamma, coef0, nu, p, shrinking, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = ? |
C |
C. Default value = ? |
eps |
eps. Default value = ? |
degree |
degree. Default value = ? |
gamma |
gamma. Default value = ? |
coef0 |
coef0. Default value = ? |
nu |
nu. Default value = ? |
p |
p. Default value = ? |
shrinking |
shrinking. Default value = ? |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::NU_SVR_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::NU_SVR_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PART_C Classification Algorithm from KEEL.
PART_C(train, test, confidence, itemsetsPerLeaf)
PART_C(train, test, confidence, itemsetsPerLeaf)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PART_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PART_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PDFC_C Classification Algorithm from KEEL.
PDFC_C(train, test, C, d, tolerance, epsilon, PDRFtype, nominal_to_binary, preprocess_type, seed)
PDFC_C(train, test, C, d, tolerance, epsilon, PDRFtype, nominal_to_binary, preprocess_type, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
C |
C. Default value = 100.0 |
d |
d. Default value = 0.25 |
tolerance |
tolerance. Default value = 0.001 |
epsilon |
epsilon. Default value = 1.0E-12 |
PDRFtype |
PDRFtype. Default value = "Gaussian |
nominal_to_binary |
nominal_to_binary. Default value = TRUE |
preprocess_type |
preprocess_type. Default value = "Normalize" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PDFC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PDFC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PFKNN_C Classification Algorithm from KEEL.
PFKNN_C(train, test, k, seed)
PFKNN_C(train, test, k, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PFKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PFKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PNN_C Classification Algorithm from KEEL.
PNN_C(train, test, seed)
PNN_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PolQuadraticLMS_C Classification Algorithm from KEEL.
PolQuadraticLMS_C(train, test, seed)
PolQuadraticLMS_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PolQuadraticLMS_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PolQuadraticLMS_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PolQuadraticLMS_R Regression Algorithm from KEEL.
PolQuadraticLMS_R(train, test, seed)
PolQuadraticLMS_R(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::PolQuadraticLMS_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::PolQuadraticLMS_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
POP_TSS Preprocess Algorithm from KEEL.
POP_TSS(train, test)
POP_TSS(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::POP_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::POP_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
Class inheriting of KeelAlgorithm, to common methods for all KEEL Preprocess Algorithms. The specific preprocessing algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
PRISM_C Classification Algorithm from KEEL.
PRISM_C(train, test, seed)
PRISM_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::PRISM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::PRISM_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Proportional_D Preprocess Algorithm from KEEL.
Proportional_D(train, test, seed)
Proportional_D(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Proportional_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Proportional_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
PSO_ACO_C Classification Algorithm from KEEL.
PSO_ACO_C(train, test, max_uncovered_samples, min_saples_by_rule, max_iterations_without_converge, enviromentSize, numParticles, x, c1, c2, seed)
PSO_ACO_C(train, test, max_uncovered_samples, min_saples_by_rule, max_iterations_without_converge, enviromentSize, numParticles, x, c1, c2, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
max_uncovered_samples |
max_uncovered_samples. Default value = 20 |
min_saples_by_rule |
min_saples_by_rule. Default value = 2 |
max_iterations_without_converge |
max_iterations_without_converge. Default value = 100 |
enviromentSize |
enviromentSize. Default value = 3 |
numParticles |
numParticles. Default value = 100 |
x |
x. Default value = 0.72984 |
c1 |
c1. Default value = 2.05 |
c2 |
c2. Default value = 2.05 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PSO_ACO_C(data_train, data_test, max_iterations_without_converge=2, numParticles=5) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PSO_ACO_C(data_train, data_test, max_iterations_without_converge=2, numParticles=5) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PSRCG_TSS Preprocess Algorithm from KEEL.
PSRCG_TSS(train, test, distance)
PSRCG_TSS(train, test, distance)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
distance |
distance. Default value = "Euclidean" |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::PSRCG_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::PSRCG_TSS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
PUBLIC_C Classification Algorithm from KEEL.
PUBLIC_C(train, test, nodesBetweenPrune, estimateToPrune)
PUBLIC_C(train, test, nodesBetweenPrune, estimateToPrune)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
nodesBetweenPrune |
nodesBetweenPrune. Default value = 25 |
estimateToPrune |
estimateToPrune. Default value = "PUBLIC(1)" |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PUBLIC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PUBLIC_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
PW_C Classification Algorithm from KEEL.
PW_C(train, test, beta, ro, epsilon)
PW_C(train, test, beta, ro, epsilon)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 8.0 |
ro |
ro. Default value = 0.001 |
epsilon |
epsilon. Default value = 0.001 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PW_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::PW_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
QAR_CIP_NSGAII_A Association Rules Algorithm from KEEL.
QAR_CIP_NSGAII_A(dat, seed, NumberofObjetives, NumberofEvaluations, PopulationSize, ProbabilityofMutation, Thefactorofamplitudeforeachattributeofthedataset, Differencethreshold)
QAR_CIP_NSGAII_A(dat, seed, NumberofObjetives, NumberofEvaluations, PopulationSize, ProbabilityofMutation, Thefactorofamplitudeforeachattributeofthedataset, Differencethreshold)
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofObjetives |
Number of Objetives. Default value = 3 |
NumberofEvaluations |
Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 2.0 |
Differencethreshold |
Difference threshold. Default value = 5.0 |
$run()
Run algorith $showRules(numRules)
Show a number of rules. By default all rules. $getInterestMeasures()
Return a data.frame with all interest measures of set rules. $sortBy(interestMeasure)
Order set rules by interest measure. $writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
A arules class with the Association Rules for both dat
dataset.
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::QAR_CIP_NSGAII_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
#Load KEEL dataset dat<-RKEEL::loadKeelDataset("car") #Create algorithm algorithm <- RKEEL::QAR_CIP_NSGAII_A(dat) #Run algorithm algorithm$run() #Rules in format arules algorithm$rules #Show a number of rules algorithm$showRules(2) #Return a data.frame with all interest measures of set rules algorithm$getInterestMeasures() #Add interst measure YuleY to set rules algorithm$addInterestMeasure("YuleY","yulesY") #Sort by interest measure lift algorithm$sortBy("lift") #Save rules in CSV file algorithm$writeCSV(paste0(tempdir(), "/myrules"))
QDA_C Classification Algorithm from KEEL.
QDA_C(train, test, seed)
QDA_C(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::QDA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::QDA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
RBFN_C Classification Algorithm from KEEL.
RBFN_C(train, test, neurons, seed)
RBFN_C(train, test, neurons, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
neurons |
neurons. Default value = 50 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::RBFN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::RBFN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
RBFN_R Regression Algorithm from KEEL.
RBFN_R(train, test, neurons, seed)
RBFN_R(train, test, neurons, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
neurons |
neurons. Default value = 50 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::RBFN_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::RBFN_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Method for read datasets in .dat KEEL format
read.keel(file)
read.keel(file)
file |
File containing the dataset to be read. It must be in KEEL .dat format. |
Returns a data.frame object with the dataset
Class inheriting of KeelAlgorithm, to common methods for all KEEL Regression Algorithms. The specific regression algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Class to calculate and store some results for a RegressionAlgorithm. It receives as parameter the prediction of a regression algorithm as a data.frame object.
Relief_FS Preprocess Algorithm from KEEL.
Relief_FS(train, test, paramKNN, relevanceThreshold, numInstancesSampled, seed)
Relief_FS(train, test, paramKNN, relevanceThreshold, numInstancesSampled, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
paramKNN |
paramKNN. Default value = 1 |
relevanceThreshold |
relevanceThreshold. Default value = 0.20 |
numInstancesSampled |
numInstancesSampled. Default value = 1000 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Relief_FS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::Relief_FS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
Ripper_C Classification Algorithm from KEEL.
Ripper_C(train, test, grow_pct, k, seed)
Ripper_C(train, test, grow_pct, k, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
grow_pct |
grow_pct. Default value = 0.66 |
k |
k. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Ripper_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Ripper_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
RISE_C Classification Algorithm from KEEL.
RISE_C(train, test, Q, S)
RISE_C(train, test, Q, S)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Q |
Q. Default value = 1 |
S |
S. Default value = 2 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::RISE_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::RISE_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Run a cross-validation experiment
runCV(algorithm, dataset, numFolds, cores)
runCV(algorithm, dataset, numFolds, cores)
algorithm |
Algorithm to be executed in the CV. It must has the parameters to be used in the executions. |
dataset |
Dataset to perform the CV. It is divided in numFolds disjoint partitions and in each iteration, one is used for test and the rest for train. |
numFolds |
Number of folds for the cross-validation procedure. |
cores |
Number of cores to execute in parallel. If it is missed, default value is 1 (sequential execution). |
Returns a list with the mean results of the numFolds executions.
#Load datasets iris <- RKEEL::loadKeelDataset("iris") #Create algorithm learner_C45_C <- RKEEL::C45_C(iris, iris) #Perform 5-folds CV results <- RKEEL::runCV(learner_C45_C, iris, 5)
#Load datasets iris <- RKEEL::loadKeelDataset("iris") #Create algorithm learner_C45_C <- RKEEL::C45_C(iris, iris) #Perform 5-folds CV results <- RKEEL::runCV(learner_C45_C, iris, 5)
Run a set of RKEEL algorithms in parallel
runParallel(algorithmList, cores)
runParallel(algorithmList, cores)
algorithmList |
List of RKEEL Algorithms to be executed |
cores |
Number of cores to execute in parallel. If it is not specified, it detects the cores automatically and execute the experiment in all of them |
Returns a list with the executed algorithms
#Load datasets iris_train <- RKEEL::loadKeelDataset("iris_train") iris_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithms learner_C45_C <- RKEEL::C45_C(iris_train, iris_test) learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test) learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test) learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test) #Create list algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C, learner_LDA_C) #Run algorithms in parallel in two cores par <- RKEEL::runParallel(algorithms, 2)
#Load datasets iris_train <- RKEEL::loadKeelDataset("iris_train") iris_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithms learner_C45_C <- RKEEL::C45_C(iris_train, iris_test) learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test) learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test) learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test) #Create list algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C, learner_LDA_C) #Run algorithms in parallel in two cores par <- RKEEL::runParallel(algorithms, 2)
Run a set of RKEEL algorithms in sequential.
runSequential(algorithmList)
runSequential(algorithmList)
algorithmList |
List of RKEEL Algorithms to be executed |
Returns a list with the executed algorithms
#Load datasets iris_train <- RKEEL::loadKeelDataset("iris_train") iris_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithms learner_C45_C <- RKEEL::C45_C(iris_train, iris_test) learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test) learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test) learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test) #Create list algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C, learner_LDA_C) #Run algorithms seq <- RKEEL::runSequential(algorithms)
#Load datasets iris_train <- RKEEL::loadKeelDataset("iris_train") iris_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithms learner_C45_C <- RKEEL::C45_C(iris_train, iris_test) learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test) learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test) learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test) #Create list algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C, learner_LDA_C) #Run algorithms seq <- RKEEL::runSequential(algorithms)
SaturationFilter_F Preprocess Algorithm from KEEL.
SaturationFilter_F(train, test, seed)
SaturationFilter_F(train, test, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::SaturationFilter_F(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::SaturationFilter_F(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
SFS_IEP_FS Preprocess Algorithm from KEEL.
SFS_IEP_FS(train, test, threshold, seed)
SFS_IEP_FS(train, test, threshold, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
threshold |
threshold. Default value = 0.005 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::SFS_IEP_FS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::SFS_IEP_FS(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
SGA_C Classification Algorithm from KEEL.
SGA_C(train, test, mut_prob_1to0, mut_prob_0to1, cross_prob, pop_size, evaluations, alfa, selection_type, k, distance, seed)
SGA_C(train, test, mut_prob_1to0, mut_prob_0to1, cross_prob, pop_size, evaluations, alfa, selection_type, k, distance, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
mut_prob_1to0 |
mut_prob_1to0. Default value = 0.01 |
mut_prob_0to1 |
mut_prob_0to1. Default value = 0.001 |
cross_prob |
cross_prob. Default value = 1 |
pop_size |
pop_size. Default value = 50 |
evaluations |
evaluations. Default value = 10000 |
alfa |
alfa. Default value = 0.5 |
selection_type |
selection_type. Default value = "orden_based" |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::SGA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::SGA_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Shrink_C Classification Algorithm from KEEL.
Shrink_C(train, test, k, distance)
Shrink_C(train, test, k, distance)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Shrink_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Shrink_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Slipper_C Classification Algorithm from KEEL.
Slipper_C(train, test, grow_pct, numBoosting, seed)
Slipper_C(train, test, grow_pct, numBoosting, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
grow_pct |
grow_pct. Default value = 0.66 |
numBoosting |
numBoosting. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Slipper_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Slipper_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
SMO_C Classification Algorithm from KEEL.
SMO_C(train, test, C, toleranceParameter, epsilon, RBFKernel_gamma, normalized_PolyKernel_exponent, normalized_PolyKernel_useLowerOrder, PukKernel_omega, PukKernel_sigma, StringKernel_lambda, StringKernel_subsequenceLength, StringKernel_maxSubsequenceLength, StringKernel_normalize, StringKernel_pruning, KernelType, FitLogisticModels, ConvertNominalAttributesToBinary, PreprocessType, seed)
SMO_C(train, test, C, toleranceParameter, epsilon, RBFKernel_gamma, normalized_PolyKernel_exponent, normalized_PolyKernel_useLowerOrder, PukKernel_omega, PukKernel_sigma, StringKernel_lambda, StringKernel_subsequenceLength, StringKernel_maxSubsequenceLength, StringKernel_normalize, StringKernel_pruning, KernelType, FitLogisticModels, ConvertNominalAttributesToBinary, PreprocessType, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
C |
C. Default value = 1.0 |
toleranceParameter |
toleranceParameter. Default value = 0.001 |
epsilon |
epsilon. Default value = 1.0e-12 |
RBFKernel_gamma |
RBFKernel_gamma. Default value = 0.01 |
normalized_PolyKernel_exponent |
normalized_PolyKernel_exponent. Default value = 1 |
normalized_PolyKernel_useLowerOrder |
normalized_PolyKernel_useLowerOrder. Default value = FALSE |
PukKernel_omega |
PukKernel_omega. Default value = 1.0 |
PukKernel_sigma |
PukKernel_sigma. Default value = 1.0 |
StringKernel_lambda |
StringKernel_lambda. Default value = 0.5 |
StringKernel_subsequenceLength |
StringKernel_subsequenceLength. Default value = 3 |
StringKernel_maxSubsequenceLength |
StringKernel_maxSubsequenceLength. Default value = 9 |
StringKernel_normalize |
StringKernel_normalize. Default value = FALSE |
StringKernel_pruning |
StringKernel_pruning. Default value = "None" |
KernelType |
KernelType. Default value = "PolyKernel" |
FitLogisticModels |
FitLogisticModels. Default value = FALSE |
ConvertNominalAttributesToBinary |
ConvertNominalAttributesToBinary. Default value = TRUE |
PreprocessType |
PreprocessType. Default value = "Normalize" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::SMO_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::SMO_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
SSGA_Integer_knn_FS Preprocess Algorithm from KEEL.
SSGA_Integer_knn_FS(train, test, paramKNN, nEval, pop_size, numFeatures, seed)
SSGA_Integer_knn_FS(train, test, paramKNN, nEval, pop_size, numFeatures, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
paramKNN |
paramKNN. Default value = 1 |
nEval |
nEval. Default value = 5000 |
pop_size |
pop_size. Default value = 100 |
numFeatures |
numFeatures. Default value = 3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test) algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test, nEval = 10, pop_size = 10) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test) algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test, nEval = 10, pop_size = 10) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
Tan_GP_C Classification Algorithm from KEEL.
Tan_GP_C(train, test, population_size, max_generations, max_deriv_size, rec_prob, mut_prob, copy_prob, w1, w2, elitist_prob, support, seed)
Tan_GP_C(train, test, population_size, max_generations, max_deriv_size, rec_prob, mut_prob, copy_prob, w1, w2, elitist_prob, support, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 150 |
max_generations |
max_generations. Default value = 100 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
mut_prob |
mut_prob. Default value = 0.1 |
copy_prob |
copy_prob. Default value = 0.01 |
w1 |
w1. Default value = 0.7 |
w2 |
w2. Default value = 0.8 |
elitist_prob |
elitist_prob. Default value = 0.06 |
support |
support. Default value = 0.03 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Tan_GP_C(data_train, data_test) algorithm <- RKEEL::Tan_GP_C(data_train, data_test, population_size = 5, max_generations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::Tan_GP_C(data_train, data_test) algorithm <- RKEEL::Tan_GP_C(data_train, data_test, population_size = 5, max_generations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Thrift_R Regression Algorithm from KEEL.
Thrift_R(train, test, numLabels, popSize, evaluations, crossProb, mutProb, seed)
Thrift_R(train, test, numLabels, popSize, evaluations, crossProb, mutProb, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
popSize |
popSize. Default value = 61 |
evaluations |
evaluations. Default value = 10000 |
crossProb |
crossProb. Default value = 0.6 |
mutProb |
mutProb. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::Thrift_R(data_train, data_test) algorithm <- RKEEL::Thrift_R(data_train, data_test, popSize = 5, evaluations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::Thrift_R(data_train, data_test) algorithm <- RKEEL::Thrift_R(data_train, data_test, popSize = 5, evaluations = 10) #Run algorithm algorithm$run() #See results algorithm$testPredictions
UniformFrequency_D Preprocess Algorithm from KEEL.
UniformFrequency_D(train, test, numIntervals, seed)
UniformFrequency_D(train, test, numIntervals, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numIntervals |
numIntervals. Default value = 10 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::UniformFrequency_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::UniformFrequency_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
UniformWidth_D Preprocess Algorithm from KEEL.
UniformWidth_D(train, test, numIntervals)
UniformWidth_D(train, test, numIntervals)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numIntervals |
numIntervals. Default value = 10 |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::UniformWidth_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::UniformWidth_D(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
VWFuzzyKNN_C Classification Algorithm from KEEL.
VWFuzzyKNN_C(train, test, k, init_k)
VWFuzzyKNN_C(train, test, k, init_k)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
init_k |
init_k. Default value = 3 |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::VWFuzzyKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("iris_train") data_test <- RKEEL::loadKeelDataset("iris_test") #Create algorithm algorithm <- RKEEL::VWFuzzyKNN_C(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
WM_R Regression Algorithm from KEEL.
WM_R(train, test, numlabels, KB)
WM_R(train, test, numlabels, KB)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numlabels |
numlabels. Default value = 5 |
KB |
KB. Default value = FALSE |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::WM_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
data_train <- RKEEL::loadKeelDataset("autoMPG6_train") data_test <- RKEEL::loadKeelDataset("autoMPG6_test") #Create algorithm algorithm <- RKEEL::WM_R(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$testPredictions
Method for writing a .dat dataset file in KEEL format given a data.frame dataset
writeDatFromDataframe(data, fileName)
writeDatFromDataframe(data, fileName)
data |
data.frame dataset |
fileName |
String with the file name to store the dataset |
data(iris) writeDatFromDataframe(iris, paste0(tempdir(), "/iris.dat"))
data(iris) writeDatFromDataframe(iris, paste0(tempdir(), "/iris.dat"))
Method for writing both train and test .dat dataset files in KEEL format.
writeDatFromDataframes(trainData, testData, trainFileName, testFileName)
writeDatFromDataframes(trainData, testData, trainFileName, testFileName)
trainData |
Train data as data.frame object |
testData |
Test data as data.frame object |
trainFileName |
String with the file name to store the train dataset |
testFileName |
String with the file name to store the test dataset |
ZScore_TR Preprocess Algorithm from KEEL.
ZScore_TR(train, test)
ZScore_TR(train, test)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
A data.frame with the preprocessed data for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ZScore_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test
data_train <- RKEEL::loadKeelDataset("car_train") data_test <- RKEEL::loadKeelDataset("car_test") #Create algorithm algorithm <- RKEEL::ZScore_TR(data_train, data_test) #Run algorithm algorithm$run() #See results algorithm$preprocessed_test